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A SPRING-MASS REPRESENTATION OF A 

FREE-FREE NONlTNIFORM BAR I N  RESPONSE TO 

LONGITUDINAL FORCES 

By Harold P. Frisch 
Langley Research Center 

STJMMARY 

A method i s  presented fo r  solving the problem of the longitudinal response 
of a free-free nonuniform bar t o  an a rb i t ra ry  force applied a t  one end, based 
upon a spring-mass model of the bar. The equations obtained are  solved fo r  the 
case of a uniform bar with a par t icular  s e t  of applied forces and the resu l t s  
a re  compared with the exact solutions of the corresponding boundary-value prob- 
lem. The comparisons indicate tha t  only a few mass points need be used i n  the 
spring-mass model t o  describe the displacements and a considerable number must 
be used t o  describe the forces accurately. Furthermore, it i s  indicated tha t  
the loca l  accelerations a re  not readily obtainable by t h i s  method. 

IN'I'ROmTCTION 

An exact solution of the boundary-value problem governing the response of 
a free-free nonuniform bar acted upon a t  one end by a time-dependent force i s ,  
i n  general, impossible o r  impractical t o  obtain. Therefore, e i ther  approximate 
methods of solution must be used or  solutions fo r  amenable problems of analogous 
systems o r  models. One analogous system with both conceptual simplicity and a 
problem tha t  can b.e reduced t o  a matrix form eas i ly  programed fo r  an automatic 
computer i s  the spring-mass system. With such a system the bar i s  represented 
by a f i n i t e  number of mass points connected i n  ser ies  by l inear ,  massless 
springs. 

The purpose of t h i s  investigation i s  t o  gain some indication of what mass- 
point density i s  necessary t o  predict  accurately displacements, s t resses ,  and 
loca l  accelerations. 
t o  derive the equations which approximately describe the displacements, s t resses ,  
and loca l  accelerations a t  any point of the free-free nonuniform bar with an 
a rb i t ra ry  force applied a t  one end. The equations obtained are  solved fo r  a 
5- and a 20-spring-mass model of a free-free uniform bar with 4 different  spe- 
c i f i c  forces and the resu l t s  are  compared with the  exact solution of the 
boundary-value problem which the spring-mass model attempts t o  represent. Smith 
i n  reference 1 used the  spring-mass model i n  the study of the longitudinal 

For t h i s  purpose the spring-mass model has been employed 



response of a free-free bar which w a s  impacted a t  one end, and Seigel and Waser 
i n  reference 2 used this model t o  determine the longitudinal response of a 
fixed-end bar subjected t o  a rectangular force pulse. 

SYMBOLS 

A cross-sectional area of bar 

an(X) = 2n + 1 - x 

bn(H) = 2n + 1 + Y 

- 

E 

F 

F(T) = p(5) 

F(5) = r(5) 

F(5) = u(T) 

F(5) = s(T) 

PI 
1 

M 

mn 

N 

n 

Young's modulus of e l a s t i c i t y  

applied force 

parabolically r i s ing  forcing function 

ramp-rise forcing function 

unit-step forcing function 

impulsive forcing function 

square matrix defined by equation (24) 

spring constant of nth spring 

length of bar 

t o t a l  mass of bar 

diagonal matrix defined by equation ( 2 3 )  

mass of nth mass point 

number of mass points i n  spring-mass model 

posit ive integer 

nth element i n  column matrix {q(F)) 

column matrix of functions t o  be determined 
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t 

tl ,t2 

X 

xn 

P 

time 

dimensional times (constants) 

distance measured along bar 

position of nth mass point, L k  - $) N 

displacement from initial position of nth mass point at time 

column matrix defined by equation ( 2 5 )  

displacement of point x on bar at time t 

modal matrix, N by N 

jth element in eigenvector (mode) associated with ith eigenvalue 

nth eigenvector 

t 

mass density 

spectral matrix, N by N 

7 

Subscripts: 

N 

n 

r 

nth eigenvalue associated with nth eigenvector 

variable of integration 

number of mass points in spring-mass model 

positive integer 

reference value 

Matrix notations : 

column matrix c >  
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transpose matrix c-I 
A dot over a symbol denotes the derivative with respect t o  time; two dots 

denote the second derivative with respect t o  t i m e .  

A bar over a symbol denotes a nondimensional quantity. 

ANALYSIS 

The Boundary-Value Problem 

The longitudinal motion of a bar, i n i t i a l l y  a t  r e s t ,  with a time-dependent 
force applied a t  one end i s  determined by the following classic  p a r t i a l  d i f fe r -  
e n t i a l  equation: 

and the conditions 

Y ( x , O )  = 0 

where 

t time 

X distance measured along bar 

2 length of bar 

Y(x,t) displacement of point x on bar a t  t i m e  t 

a x )  
P(X) 

Young’s modulus of e l a s t i c i t y  fo r  material of which bar i s  made 

mass density of the  bar material 
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A b )  cross-sectional area of the bar 

F(t) force applied at end of bar 

For the nonuniform bar, equations (1) and (2) can be nondimensionalized by 
choosing reference values 5, pry and Ar and defining the following 
quantities: 

T=ziPr E r  

- t  t = -  
T 

- E( 2Y) E(F)  = - 
Er 

- A( 2x) A ( x )  = - 
A r  

- Y( 27,TF) Y(Z,€) = 
1 

1 
ErAr 

- -  
F(t) = -F(s) 

(4)  

( 5 )  

(7)  

( 9 )  

It follows that dimensionless forms of equations (1) and (2) can thus be 
expressed as 
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and 

- 
Y ( P , O )  = 0 = o  

X=O 

= F(S) 

T=l 1 
Solutions for a Uniform Bar 

For a uniform bar, equations (11) and (12) reduce to 

2 ax 
and 

The solution of these equations may be obtained by means of the Laplace 
transform. 
tions describing the displacement, force, and local acceleration at any section 
along the bar are desired. 

(See, for example, ch. 8 of ref. 3 . )  For present purposes the equa- 

These parameters are given, respectively, by 

y(x,t) = L-1 +F-(S) - 
--- { sinhs 1 
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and 

sinh s 

where 

h ( X )  = 2n + 1 + x 
- - 

f ( s )  i s  the inverse Laplace transform of F(7) or, symbolically, 

L-’{f(s)} = F(z), where s i s  a parameter 

H[] i s  a function which equals 1 i f  the term i n  brackets i s  posit ive and 
equals 0 i f  the term i n  brackets i s  negative 

Equations (l?), (16), and (17) s t a t e  mathematically the f ac t  t ha t  the signal i s  

transmitted along the bar a t  a velocity equal t o  E and t ha t  when a signal 

a r r ives  a t  e i ther  end of the  bar it i s  reflected.  
the  constant 
traverse the length of t he  bar. 

Thus, it may be noted tha t  
T given by equation (4)  i s  the time required fo r  a sign31 t o  

Equations (l?), (16), and (17) represent an exact solution t o  the boundary- 
value problem s ta ted  and will be evaluated and discussed subsequently f o r  four 
par t icu lar  forcing functions F(T). It should be mentioned tha t  the accelera- 
t i on  (eq. (17)) i s  d i rec t ly  proportional t o  the derivative of the forcing f’unc- 
t i on  with respect t o  time, with a time delay; consequently, some care must be 
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taken i n  t rying t o  assign physical meaning t o  loca l  acceleration i n  which 
ap(q 
a7 

F(C) or - i s  discontinuous. 

Different ia l  Equations f o r  the Spring-Mass Representation of a Bar 

A s  indicated i n  the introduction, the boundary-value problem for a non- 
uniform bar, given by equations (1) and (2), i s  solvable only i n  a few very 
special  cases. However, the equations describing the motion of a spring-mass 
model of t h i s  bar a re  more t rac tab le  and may be solved by matrix techniques. 
The governing equations along with a systematic method of solution a re  derived 
i n  the following paragraphs. 

Figure 1 shows a schematic representation of the spring-mass model of a 
nonuniform bar. I n  general, the location and mass of the mass points i s  a 
matter of engineering judgment. I n  some applications it i s  convenient t o  take 
equal intervals  between successive mass points and t o  assign t o  the nth mass 
point a t  Xn a m a s s  represented by 

J xn-l+xn 
2 

where m(x) 
the mass stat ions may be evenly spaced and equation (18a) reduces t o  

i s  the mass per un i t  length of the bar. For the uniform bar, a l l  

f o r  a l l  n where M i s  the t o t a l  mass of the bar and N i s  the t o t a l  number 
of mass points. 

For e i the r  a uniform or  a nonuniform bar, the spring constant k, of the 
spring connecting the mass points mn and %+1 i s  given by 

dx 
kn = s,”” E(x) A ( x )  

which f o r  the uniform bar reduces t o  

NEA kn = - 
2 

a 



Let Yn(t) be the  displacement (posit ive up i n  f ig .  1) a t  time t of the 
nth mass point from i t s  i n i t i a l  position. Then the response of the system 
which i s  i n i t i a l l y  a t  rest and i s  excited a t  the Nth mass point by a force 
F ( t )  i s  described by a system of equations which takes the matrix form 

and t h e  i n i t i a l  conditions 

where 

i;( 
m2 

-k3 

c 

0 

-%-1 k N - l  + kN -%I 
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and 

By means of equations (4 ) ,  ( 5 ) ,  and (10) and the following four equations 

{qq} = L{Y(t,> 2 (27) 

LE1 = ip1 ( 2 8 )  

{??(s)} = L @ ( T z ’ >  
ErAr 
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equations ( 2 0 ) ,  (21),  and (22) can be written in dimensionless form as follows: 

Solution of the Differential Equations 

- -  
Y(t) 

The classical method of solving equation (31) is to expand the unlmown 
in terms of the normal modes of oscillation of the homogeneous equation 

(See ch. 1 of ref. 4.) This leads to a system of uncoupled ordinary differen- 
tial equations. For simple harmonic motion this equation becomes 

The N orthogonal eigenvectors cyn) and their N associated eigenvalues 

a,$ of equation (35), which can be rapidly and accurately obtained by the 
Serial-Jacobi method', are the 
The modal matrix [y] of the system is defined to be an N by N matrix whose 

columns are the normal modes {yn}. 

N normal modes and frequencies of equation (34) .  

The normal modes of equation (34) are 
determined only to within a multiplicative constant. In the following work it 
is convenient to choose this constant so that [y] satisfies the condition of 
orthonormality which is 

' 

c.3 where [G] is the transpose of 

'Individuals having access to data processing installations holding member- 
ship in SHARE may refer to program NY EW. 



A n  N by N diagonal matrix which will a lso  be used i s  constructed 

so tha t  the element on the diagonal i n  the i t h  column i s  the eigenvalue associ- 
ated with the eigenvector i n  the i t h  column of [y]. Substi tuting 

in to  equations ( S l ) ,  (32),  and (33) and premultiplying each term i n  the 
resul t ing expressions by the  transpose of the modal matrix 
system of uncoupled equations, namely (see, f o r  example, r e f .  5 )  

[y] leads t o  a 

with i n i t i a l  conditions as follows: 

@ o ) }  = { o }  

{m} = co) 
( 3 9 )  

From the N uncoupled ordinary d i f fe ren t ia l  equations i n  equation (38) 
and the i n i t i a l  conditions given i n  equations (39) and (40) it i s  possible t o  
determine the following formula f o r  the general element i n  the column 
matrix {q(~)}  : 

7jn(x) 

where ym i s  the Nth element i n  the nth eigenuector and w, ,s the natural  

frequency associated with the nth eigenvector. Then, by means - of the matrix 
equation (37),  it i s  possible t o  determine the displacement 
mass point. The loca l  acceleration Yn(T) of the mass point a t  s ta t ion  xn 
can be found by different ia t ing matrix equation (37) - that i s  

Yn(T) of each - .. 

where En(€) can'be found from equation (38). The t o t a l  longitudinal force a t  
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any point Z on the spring connecting the n and (n  - 1) mass of a uniform 
bar i s  taken t o  be 

SPECIFIC FORCING FUNCTIONS 

The specific dimensionless forcing functions F(z) used i n  the calcula- 
t ions presented i n  t h i s  paper a re  the following: 

(1) The impulsive forcing function F(7) = S(T) where 

S ( 7 )  dE = 1 

and 

s(T) = 0 

(44) 

- -  
(2) The unit-step forcing function F ( t )  = u(z)  where 

u(7) = 0 

u(T) = 1 

- -  
( 3 )  The ramp-rise forcing function F ( t )  = r(T) where 

r(T) = o 
- 
t - 

r ( t )  = 
t 2  

rfi) = 1 

(t c 0 )  

( T >  0 )  
1 (45) 

(T c 0 )  1 



-- (4)  The parabolically r i s ing  forcing function F ( t )  = p ( r )  where 

p(T) = 0 (5 s 0 )  7 

p(T) = 1 (72 6 X)J 

Graphs of the three forces described i n  equations (45) t o  (47) are  shown 
plot ted as  functions of time i n  figure 2. 

The values of tl and z2 used i n  the calculations were obtained by 
taking T = 0.352 sec, ti = 0.05 sec, and t 2  = 0.1 sec which by equation (5) 
implies tha t  tl = 0.142 and t 2  = 0.284. The value of T chosen is  repre- 
sentative of the  t i m e  required for  a signal t o  traverse the  length of a large 
Nova class  vehicle, and the quantity t 2  i s  representative of the time required 
fo r  a solid-fuel rocket engine t o  achieve maximum thrust .  
forcing functions are chosen t o  be representative of the longitudinal forces 
experienced by missile-type structures during l i f t - o f f .  They were chosen 60 
t ha t  a study could be made of the e f fec t  of the time history of the applied 
force pr ior  t o  a t ta in ing  i t s  maximum on the forces and loca l  accelerations i n  
the bar. 

- 

. The last three 

RESULTS AND DISCUSSION 

The equations dkscribing the displacements? forces, and loca l  accelera- 
t ions of points along a uniform bar, obtained approximately by the analysis 
j u s t  presented and given exactly by equations (l?), (16), and (l’j’), have been 
evaluated by using the four forcing functions defined and a 5- and a 20-spring- 
mass representation of the  bar. 
be obtained of how w e l l  t h i s  spring-mass solution approaches the exact solution 
as the mass-point density i s  increased. 

By comparing the results, some indication can 

The comparisons made between the solutlon of the problem of the spring-mass 
representation of a uniform bar and the exact solution of the corresponding 
boundary-value problem are shown i n  figures 3 t o  15. 
e i ther  dimensionless displacements, forces, or  l oca l  accelerations plot ted as 
functions of dimensionless time. 

Each of the figures shows 

The solid-line curve i n  each figure represents 
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resu l t s  from the exact solution of the boundary-value problem, and the dashed- 
l i n e  curve represents resu l t s  from approximate solution. For convenience i n  
making comparisons, f igures 3 t o  1-5 have been arranged i n  three se t s  so tha t  
f igures 3 t o  5 a re  those associated with displacements, f igures 6 t o  ll are  
those associated with forces, and figures 12 t o  15 are  those associated with 
loca l  accelerations. 

In  the s e t  of f igures pertaining t o  displacements, the spring-mass solu- 

I n  figures 3 and 4, the  dis- 

- t ions obtained a t  specific mass s ta t ions  
t ions obtained for  F = Zn on the uniform bar. 
placement his tory of specif ic  points along the bar excited by an impulsive force 
i s  shown. 
ser ies  of steps. 
a f a i r  representation of the  displacement. 
20-spring-mass solution shown i n  figure 4 comes closer t o  representing the 
de ta i l s  of the exact solution i n  some respects. 

Xn are  compared with the  exact solu- 

The exact solution shows that the displacement curve increases i n  a 
In  figure 3 it i s  seen tha t  t he  5-spring-mass solution gives 

However, as should be expected, the 

I n  figure 5 the displacement, calculated exactly, due t o  a uni t  force i s  
shown and i s  compared with a 5-spring-mass solution. The curves based on t h i s  
solution a re  a very close approximation t o  those based on the exact solution. 
It should be noted tha t  the displacement shown i s  predominantly rigid-body 
motion. 
t i on  with a greater degree of accuracy than the 5-spring-mass solutiorr but the 
difference between these two solutions i s  very s l igh t  and hence the 20-spring- 
mass solution i s  not shown. 

The 20-spring mass solution w i l l  naturally apFroximate the  exact solu- 

Furthermore, the displacements associated with the ramp rise and the para- 
bol ical ly  r i s ing  force are a l so  omitted since they a re  predominantly rigid-body 
motfon and a re  almost the same as the displacements obtained with a unit forcing 
function. 

Figures 6 t o  11 pertain t o  the  forces. I n  these figures the approximate 
from equation (43) i s  compared force obtained i n  the in te rva l  q-l 5 i 5 Zn 

with the  exact solution determined a t  Z = $[G-l + Zn]. It should be recalled 

tha t  the approximate force i s  constant over the in te rva l  because of an absence 
of i n e r t i a l  forces within the  interval .  Figure’s 6 and 7 are associated with 
the uni t  forcing function, f igures 8 and 9, with a ramp-rise force, and f ig-  
ures 10 and 11, with a parabolically r i s ing  force. 
are superimposed on the exact solution i n  figures 6, 8, and 10, and the  
20-spring-mass solutions are superimposedin figures 7, 9, and 11. It is  evi- 
dent from figures 6 t o  11 that the curves obtained from the 20-spring-mass solu- 
t i o n  can approximate the curve obtained from the boundary-value problem with a 
higher degree of accuracy than can those based on the 5-spring-mass solution. 
Furthermore, it can be obsel-ved i n  figures 6, 8, and 10 tha t  the  curves 
describing the forces exis t ing i n  the  springs of the 5-spring-mass model a re  
nearly independent of the applied forces considered; t ha t  is ,  the shape and 
amplitude of the curves i n  figures 6, 8, and 10 are  essent ia l ly  the same. I n  
figures 7, 9, and 11 the curves describing the  forces i n  the springs of the 
20-spring-mass model would follow the curves obtained from the  exact solution 

The 5-spring-mass SolUtiOnS 



of the boundary-value problem almost exactly if it were not for the oscillations 
which are superimposed on the general shape of the approximate curve. The 
amplitude of these oscillations about the exact curve increases as the peak 
values of the first derivatives of the applied forces with respect to time 
increase. 

The exact and approximate curves describing the time history of the local 

Yn are com- 
accelerations are shown in figures I 2  to 15. In these figures the results of 
the approximate solutions obtained at the specific mass stations 
pared with the results of the exact solution obtained for 
accelerations associated with the ramp-rise force (figs. 12 and 13) and the 
parabolically rising force (figs. 14 and 15) are shown since these two forces 
are the only ones considered which lead to meaningful results. 
recalled that only the ramp-rise and parabolically rising forces lead to accel- 
eration histories which are realizable. 
the 5-spring-mass solution are shown, and in figures 13 and 15 the results of 
the 20-spring-mass solution are shown. 

= Jr,. Only the 

It may be 

In figures 12 and 14 the results of 

In figures 12 and 14, associated with the 3-spring-mass solution, it 
may be seen that the curves describing the local acceleration of the mass points 
associated with either the ramp-rise or the parabolically rising force have the 
same general shape but differ in magnitude. It may also be noted that, in both 
cases, all the peak values obtained from the exact solution of the boundary- 
value problem are grossly underesrtimated by the 5-spring-mass solution. By 
examination of equation (17) and figures 12 to 13 it may be found that the 
Local acceleration obtained from the exact solution to the boundary-value psob- 
lem is made up of a series of pulses of duration t2 = t T where t2 is the 
time required from t = 0 for the force to reach its constant value. In addi- 
tion, it should be noted that near either end of the bar these pulses overlap 
and reinforce each other; these pulses w i l l  hereinafter be referred to as rein- 
forced pulses. For example, reinforced rectangular pulses are seen to exist at 
stations 0.1 and 0.9 in figure I 2  and reinforced triangular pulses are seen to 
exist at stations 0.1 and 0.9 in figure 14. 

4 - 

The 20-spring-mass solutions of the local accelerations are shown in fig- 
In figure 13, which is associated with the ramp-rise force it ures 13 and 15. 

may be seen that the 20-spring-mass solution is capable of predicting the 
arrival time and the magnitude of the rectangulqr pulses which are not rein- 
forced. For the reinforced pulses it becomes evident that if the reinforced 
part is of very short duration the peak values of the reinforced pulse will be 
underestimated. In figure 15, which is associated with the parabolically rising 
force, the curve for the 20-spring-mass solution tends to round off and hence 
to underpredict the peak values of all the triangular pulses which are not rein- 
forced, that is, those at stations 0.575 and 0.175. For the stations at which 
reinforced triangular pulses occur, the approximate solution again underesti- 
mates the peak values at all stations shown except at station 0.073. It should 
be observed, however, that at station 0.075, there is a relatively long time 
between the two peaks of the reinforced pulse, for which the acceleration is 
constant and that this constant is very nearly equal to the peak value of the 
acceleration at station 0.075. 
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The existence of osci l la t ions with large posit ive and negative amplitude 
i n  the 20-spring-mass solution i s  more pronounced i n  the  curves which attempt 
t o  predict the loca l  accelerations than it i s  i n  the  curves which attempt t o  
predict the forces a t  points along the uniform bar. 
inherent i n  the spring-mass model and tend t o  mask the exact solution of the  
boundary-value problem. 
values of the  loca l  acceleration a t  a l l  points along the bar with a spring-mass 
model having 20 o r  fewer mass points. 

These osci l la t ions are  

Thus, it i s  impossible t o  predict accurately the peak 

I n  the  present paper an attempt has been made t o  evaluate an approximate 
method of solving the  problem of the longitudinal response of a nonuniform bar 
with an arbi t rary force applied a t  one end. The method involved replacing the 
bar by a spring-mass model. The equations describing the  displacements, forces, 
and loca l  accelerations a t  points i n  t h i s  model were obtained by means of a 
m o d a l  analysis. These equations w e r e  specialized t o  the case of a uniform bar, 
f o r  which the problem of longitudinal responses can be solved exactly. Compari- 
sons were then made between the  exact and the approximate expressions describing 
the displacements, forces, and loca l  accelerations a t  specific points along the  
uniform bar for  specific forces. For the forces which were considered, the dis- 
placement history of any point along the uniform bar was found t o  be predomi- 
nantly rigid-body motion and, therefore, independent of the mass-point density. 
It a l s o  appears tha t ,  fo r  these applied forces, the  force history a t  any point 
along the uniform bar could be approximated sa t i s fac tor i ly  with 20 mass points 
and, i n  addition, it was shown tha t  a 20-spring-mass model i s  not capable of 
accurately predicting the actual  acceleration history a t  a l l  the points along 
the bar. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., April 11, 1964. 
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(a )  Nonuniform bar. 
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(b)  Spring-mass analogy. 

Figure 1.- Nonuniform bar and i t s  spring-mass analogy with applied force F ( t )  applied a t  one end. 
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( a )  H(F) = u('tT); step force.  

(b )  a(7) = r(7); ramp-rise force. 

t 

( c )  F(7) = p(5) ;  parabolically r i s ing  force. 

Figure 2.- Sketch of different applied forces acting a t  s ta t ion  one. 
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Exact solution 
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Figure 3 . -  Comparison between displacement y(F,x) obtained by an exact and an approximate analysis 
f o r  uniform bar with applied force F(7) = 8(5). 
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l o r  --- Twenty-spring-mass solution 

I b I I I 1 _ _  -1 -3 - I 
0 I 2 3 4 5 6 7 8 

- 
Dimensionless time, t 

- 
Figure 4.- Comparison between displacement Y(T,F) obtained by - an exact and an approximate analysis 

f o r  uniform bar with applied force F(X) = 6(7). 
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--- Five- spring- mass solution 
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( 0 )  F = 0.9. 
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(c)  3i = 0.1. 
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- 
Figure 5.- Comparison between displacement Y(x,t) obtained by an exact and an approximate analysis 

(See f i g .  2 fo r  sketch of for uniform bar with applied force F(K) = u(?). u(E) . )  
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Five-spring-mass solution 
Exact solution 

/ \  t- \ 

2 . O r  (a) K = 0.8. --- 

I -  t 

(b) 7i = 0.6. 

t 

(d) 7i = 0.2. 

1 I -1 I I --I 
2 3 4 5 6 7 8 

- .5; I 

- 
Dimensionless time, t 

aqx 5) 
a r  Figure 6.- Comparison between force - obtained by an exact and an approximate analysis for 

uniform bar with applied force F(T) = ~(5). (See fig. 2 for sketch of u ( r ) . )  
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_ _ -  Twenty-spring-mass solution 
- Exact solution 

-.5' I I I 8 I 
I I I 

1( I .5 I '  

,5' I I I I I I I I 

-.5' I I I I I I I 

I I  
-.50 I h i i S & + A  

Dimensionless time, T 

Figure 7.- Comparison between force obtained by an exact and an approximate analysis fo r  
?E 

uniform bar with applied force F(7) = u(F). (See f ig .  2 f o r  sketch of u(z ) . )  
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--- Five-spring-mass solution 

E xoc t solution 
1.5- (a) I = 0.8. 
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( d )  5( = 0.2. 

I I 1 -  I I I 1 1 I 
I 2 3 4 5 6 7 8 9 

-4 
- 

Dimensionless time, t 

a?( Y ,  q 
Figure 8.- Comparison between force - 

& 
obtained by an exact and an approximate analysis fo r  

uniform bar with applied force F(T) = r(z). (See f i g .  2 f o r  sketch of r(6).) 
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--- Twenty- spring- mass solution 
- Exact solution 

I I I I I I I I 

'"r (b) X =0.8. 
% " -  

I I I I 1 

I I I I I I I I I 

r (d) X = 0.4. 

-5' I I I 1 I I I 

'9- (e) x = 0.2. 
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-5' I I I I I I I I I 

( f )  z = 0.05. 
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1 2 3 4 5 6 7 8 9  

Dimensionless time, i 

Figure 9.- Comparison between force - obtained by an exact and an approximate analysis for =- 
uniform bar with applied force F(F) = r(F). (See fig. 2 for sketch of r(F).) 
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--- Five-spring-moss solution - Exact solution 
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ay Figure 10.- Comparison between force obtained by an exact and an approximate analysis for 

uniform bar with applied force F(F) = ~(5). (See fig. 2 for sketch of p(T).) 



--- Twenty-spring-mass solution 

- Exact solution 
l . 5 ~  si = 0.95. 

0 I/ I I I 1 1 I I I I 

(b) X 0.8. 

I I I I I I - 

w- I I I I I I I 1 -  g -.5 
L 
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I I  I I I I I I I I 
1 2 3 4 5 6 7 8 9  -.50 

Dimensionless time, f 

Figure ll.- Comparison between force obtained by an exact and an approximate analysis for ay - 
uniform bar with applied force F(F) = p(Z).  (See f i g .  2 for sketch of p (F) . )  



--- Five-spring-mass solution 

Figure 12.- Comparison 

- Exact solution 

7 .w 
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between local acceleration a'('JT) obtained by an exact and an approximate af .~ - 
analysis for uniform bar with applied force F(F) = r(F). (See fig. 2 for sketch of r(F).) 



--- Twenty-spring-moss solution 

- Exact solution 

1 1  I I I I I " u -3.51 
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-3.51 

Figure 13.-  Comparison between loca l  acceleration obtained by an exact and an approximate 

(See f ig .  2 f o r  sketch of 
9 

analysis f o r  uniform bar with applied force F(5) = r(E).  r(F).) 
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Exact solution 
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Figure 14.- Comparison between local acceleration obtained by an exact and an approximate 
- -  a? 

analysis for uniform bar with applied force F(t) = p(T). (See fig. 2 for sketch of p(T).) 
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Twenty-spring-moss solution - - -  
- Exact solution 

14.04r(0) Si = 0.975. 
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Figure 15.- Comparison between loca l  acceleration obtained by an exact and an approximate 
aT2 - _  

analysis for uniform bar with applied force F ( t )  = ~ ( 7 ) .  (See f ig .  2 for sketch of p(x) . )  
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